Microstructural Evolution in Rapidly Quenched ZrO₂-3 mol% Y₂O₃ by Annealing

Tatsuo NOMA, Masahiro YOSHIMURA, Masaharu KATO*, Mezame SHIBATA*, Hiroshi SETO* and Shigeyuki SŌMIYA

```
Research Laboratory of Engineering Materials, Tokyo Institute of Technology 4259, Nagatsuta, Midori-ku, Yokohama-shi 227
*Department of Materials Science and Engineering, Tokyo Institute of Technology
```

ZrO₁-3 mol % Y₁O₃ was rapidly quenched from melts, and annealed at 1700 °C for 48 h in air. X-ray diffraction analysis and TEM observation revealed that the tetragonal phase in as-quenched samples was nontransformable and the phase in annealed samples was fransformable under external streesses. The tetragonal phase in as-quenched samples was formed by diffusionless transformation of the cubic phase. Upon annealing, the microstructures did not change discontinuously, but the tetragonal twins coarsened.

[Received February 14, 1986]

Preparation of Zirconia Ceramics with Straight and Uniform-Sized Channels

Akio KATO and Hiroaki MIZUMOTO*

Department of Applied Chemistry, Faculty of Engineering, Kyushu University 10-1, Hakozaki 6-chome, Higashi-ku, Fukuoka-shi 812 * Toyo Soda Manufacturing Co., Ltd.

Firing of zirconia (Y₂O₃: 3 mol%) powder-carbon fiber compact in air at 1500°-1600°C gave a zirconia ceramics with straight channels of uniform diameter. [Received February 18, 1986]